Single-photon non-linearity at room temperature

0
  • 1.

    Chikkaraddy, R. et al. Strong coupling of a single molecule at room temperature in plasmonic nanocavities. Nature 535, 127-130 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 2.

    Hail, CU et al. Nano-printing of organic molecules at the quantum level. Nat. Common. ten, 1880 (2019).

    ADS
    Item

    Google Scholar

  • 3.

    Maser, A., Gmeiner, B., Utikal, T., Götzinger, S. & Sandoghdar, V. Coherent nonlinear optics to a few photons with a single molecule. Nat. Photon. ten, 450-453 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 4.

    Wang, D. et al. Coherent coupling of a single molecule to a scanning Fabry-Perot microcavity. Phys. Rev. X 7, 021014 (2017).

    Google Scholar

  • 5.

    Wang, D. et al. Transform a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483-489 (2019).

    CASE
    Item

    Google Scholar

  • 6.

    Zasedatelev, AV et al. An organic polariton transistor at room temperature. Nat. Photon. 13, 378-383 (2019).

    ADS
    CASE
    Item

    Google Scholar

  • 7.

    Walmsley, IA Quantum Optics: Science and Technology in a New Light. Science 348, 525-530 (2015).

    ADS
    MathSciNet
    CASE
    Item

    Google Scholar

  • 8.

    Chang, DE, Vuletić, V. & Lukin, MD Nonlinear quantum optics – photon by photon. Nat. Photon. 6, 685-694 (2014).

    ADS
    Item

    Google Scholar

  • 9.

    Reiserer, A., Ritter, S. & Rempe, G. Non-destructive detection of an optical photon. Science 342, 1349-1351 (2013).

    ADS
    CASE
    Item

    Google Scholar

  • ten.

    Shomroni, I. et al. All optical routing of single photons through a single atom switch controlled by a single photon. Science 346, 903-906 (2014).

    ADS
    Item

    Google Scholar

  • 11.

    Tiecke, TG et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241-244 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 12.

    Hacker, B., Welte, S., Rempe, S. & Ritter, S. A photon-photon quantum gate based on a single atom in an optical resonator. Nature 536, 193-196 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 13.

    Volz, T. et al. Ultra-fast all-optical switching by single photons. Nat. Photon. 6, 605-609 (2012).

    ADS
    Item

    Google Scholar

  • 14.

    Giesz, V. et al. Coherent manipulation of an artificial atom in the solid state with few photons. Nat. Common. 7, 11986 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 15.

    Sun, S., Kim, H., Luo, Z., Solomon, GS & Waks, E. A single-photon switch and transistor activated by solid-state quantum memory. Science 361, 57-60 (2018).

    ADS
    CASE
    Item

    Google Scholar

  • 16.

    Dietrich, CP, Fiore, A., Thompson, MG, Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multifunctional quantum photonic integrated circuits. Laser photon. Tower. ten, 870-894 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 17.

    Peyronel, T. et al. Quantum nonlinear optics with single photons activated by strongly interacting atoms. Nature 488, 57-60 (2012).

    ADS
    CASE
    Item

    Google Scholar

  • 18.

    Chen, W. et al. All optical and transistor switch controlled by a stored photon. Science 341, 768-770 (2013).

    ADS
    CASE
    Item

    Google Scholar

  • 19.

    Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by Rydberg interstate interactions. Phys. Rev. Lett. 113, 053601 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 20.

    Sanvitto, D. & Kéna-Cohen, S. The road to polaritonic devices. Nat. Mater. 15, 1061-1073 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 21.

    Deng, H., Haug, H. & Yamamoto, Y. Bose-Einstein Exciton-polariton Condensation. Rev. Mod. Phys. 82, 1489-1537 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • 22.

    Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409-414 (2006).

    ADS
    CASE
    Item

    Google Scholar

  • 23.

    Plumhof, JD, Stöferle, T., Mai, L., Scherf, U. & Mahrt, RF Room temperature Bose-Einstein condensation of cavity excitons-polaritons in a polymer. Nat. Mater. 13, 247-252 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 24.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299-366 (2013).

    ADS
    Item

    Google Scholar

  • 25.

    Lerario, G. et al. Superfluidity at room temperature in a polariton condensate. Nat. Phys. 13, 837-841 (2017).

    CASE
    Item

    Google Scholar

  • 26.

    Sun, Z. & Snoke, DW Optical switching with organics. Nat. Photon. 13, 370-371 (2019).

    ADS
    CASE
    Item

    Google Scholar

  • 27.

    Baranikov, AV et al. Universal all-optical cascade logic gate with sub-picosecond operation. Preprint at https://arxiv.org/abs/2005.04802 (2020).

  • 28.

    Tartakovskii, AI et al. Raman scattering in strongly coupled organic semiconductor microcavities. Phys. Rev. B 63, 121302 (2001).

    ADS
    Item

    Google Scholar

  • 29.

    Coles, DM et al. Vibration-assisted polariton relaxation processes in strongly coupled organic-semiconductor microcavities. Av. Function. Mater. 21, 3691–3696 (2011).

    CASE
    Item

    Google Scholar

  • 30.

    Grant, RT et al. Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye. Av. Opt. Mater. 4, 1615-1623 (2016).

    CASE
    Item

    Google Scholar

  • 31.

    Daskalakis, KS, Maier, SA & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic condensate of polaritons. Phys. Rev. Lett. 115, 035301 (2015).

    ADS
    CASE
    Item

    Google Scholar

  • 32.

    Bobrovska, N. et al. Dynamic instability of an out-of-equilibrium exciton-polariton condensate. ACS Photon. 5, 111-118 (2018).

    CASE
    Item

    Google Scholar

  • 33.

    Scherf, U., Bohnen, A. & Müllen, K. Polyarylenes and poly (arylenevinylene) s, 9 Oxidized states of a ladder polymer (1,4-phenylene). Makromol. Chem. 193, 1127-1133 (1992).

    CASE
    Item

    Google Scholar


  • Source link

    Leave A Reply

    Your email address will not be published.